(Centrale Mp) Dans [latex]{mathbb{R}^n}[/latex], résolution de [latex]{Ax=b}[/latex] par la méthode du gradient à pas constants→ Lire la suite
- Points extrémaux d’une partie convexe Soit [latex]{X}[/latex] une partie convexe d'un [latex]{mathbb{R}}[/latex]-espace vectoriel [latex]{E}[/latex]. Un point [latex]{uin X}[/latex] est dit extrémal si [latex]{Xbackslash {u}}[/latex] est convexe. On munit [latex]{mathbb{R}^{2}}[/latex] de la norme euclidienne.Déterminer alors les points extrémaux de la boule unité fermée. Même question pour la norme définie par [latex]{||(x,y)||=|x|+|y|}[/latex]. Montrer que [latex]{u}[/latex] est extrémal dans [latex]{X}[/latex] si et seulement si [latex]{u}[/latex] n'est pas le milieu de deux points de [latex]{Xbackslash {u}}[/latex]. Soit [latex]{mathcal{B}}[/latex] la boule unité fermée d'un espace euclidien [latex]{E}[/latex].On munit [latex]{mathcal{L}(E)}[/latex] de la norme: [latex]{N(u)=suplimits_{xin mathcal{B}}||u(x)||}[/latex]. Montrer que le groupe orthogonal [latex]{O(E)}[/latex] est l'ensemble des points extrémaux de [latex]{mathcal{B}}[/latex]. On admettra que…
- Une inéquation différentielle Soit [latex]{fin C^{1}(mathbb{R}, mathbb{R})}[/latex] telle que [latex]{f(1)=1}[/latex] et : [latex]{forall xgeq 1}[/latex], [latex]{f^{prime }(x)=dfrac{1}{x^{2}+f^{2}(x)}}[/latex]. Montrer que [latex]{f}[/latex] a une limite finie [latex]{L}[/latex] en [latex]{+infty }[/latex] et que [latex]{Lleq 1+dfrac{pi}{4}}[/latex]→ Lire la suite
- Une base de Kn[X] Soient [latex]{Pin mathbb{K}[X]}[/latex], de degré [latex]{n}[/latex], et soient [latex]{a_{0},...,a_{n}}[/latex] distincts dans [latex]{mathbb{K}}[/latex]. Montrer que les polynômes [latex]{P_j(X)=P(X+a_{j})}[/latex] forment une base de [latex]{mathbb{K}_{n}[X]}[/latex].→ Lire la suite
- Une factorisation Soit [latex]{nin mathbb{N}^{ast }}[/latex]. On considère le polynôme : [latex display="true"]{begin{array}{rl}P_n&=1+2X+3X^{2}+cdots+(n-1)X^{n-2}+nX^{n-1}\\&+(n-1)X^{n}+...+2X^{2n-3}+X^{2n-2}end{array}}[/latex]Trouver les racines de [latex]{P_n}[/latex] et le factoriser dans [latex]{mathbb{C}[X]}[/latex].→ Lire la suite
- Puissances et racines de matrices Pour [latex]{Ainmathcal{M}_n(mathbb{K})}[/latex], calcul de [latex]{A^n,,ninmathbb{Z}}[/latex] de [latex]{A^{1/n}}[/latex], de [latex]{exp(A)}[/latex] → Lire la suite
- Déterminant et polynômes Soit [latex]ninmathbb{N}[/latex], et [latex]{P_{n,j}(x)=(1-x)^{j}(1+x)^{n-j}=displaystylesum_{i=0}^{n}a_{n,i,j}x^{i}}[/latex] pour [latex]0le jle n[/latex]. On étudie la matrice des coefficients [latex]a_{n,i,j}[/latex] et on calcule son déterminant.→ Lire la suite
- Étude d’une série de fonctions Étude de la fonction [latex]{f:xmapsto displaystylesumlimits_{nin mathbb{N}}ln (1+e^{-nx})}[/latex]. Équivalent de [latex]f[/latex] en [latex]0[/latex].→ Lire la suite
- Un condition suffisante de nilpotence Soit [latex]{Min mathcal{M}_{n}(mathbb{R})}[/latex]. Alors [latex]{M}[/latex] est nilpotente [latex]{Leftrightarrowforall kinmathbb{N}^*mathrm{t}mathrm{r}(M^{k})=0}[/latex].→ Lire la suite
- Étude de la suite n ⟼ (1+1/n)n+a (Exercice d'oral Centrale Mp) Pour tout réel [latex]{a}[/latex], on sait que la suite [latex]{n mapsto (1+1/n)^(n+a)}[/latex] tend vers e. Dans cet exercice, on étudie la monotonie de cette suite, et sa position par rapport à la limite e, en fonction du paramètre [latex]{a}[/latex].→ Lire la suite
- Intégrabilité de 1/(1+et |sin t|) sur ℝ+ Intégrabilité de [latex]{dfrac{1}{1+text{e}^t|sin t|}}[/latex] sur [latex]{mathbb{R}^+}[/latex]→ Lire la suite