Soit [latex]ninmathbb{N}[/latex], et [latex]{P_{n,j}(x)=(1-x)^{j}(1+x)^{n-j}=displaystylesum_{i=0}^{n}a_{n,i,j}x^{i}}[/latex] pour [latex]0le jle n[/latex].
On étudie la matrice des coefficients [latex]a_{n,i,j}[/latex] et on calcule son déterminant.→ Lire la suite
- Points extrémaux d’une partie convexe Soit [latex]{X}[/latex] une partie convexe d'un [latex]{mathbb{R}}[/latex]-espace vectoriel [latex]{E}[/latex]. Un point [latex]{uin X}[/latex] est dit extrémal si [latex]{Xbackslash {u}}[/latex] est convexe. On munit [latex]{mathbb{R}^{2}}[/latex] de la norme euclidienne.Déterminer alors les points extrémaux de la boule unité fermée. Même question pour la norme définie par [latex]{||(x,y)||=|x|+|y|}[/latex]. Montrer que [latex]{u}[/latex] est extrémal dans [latex]{X}[/latex] si et seulement si [latex]{u}[/latex] n'est pas le milieu de deux points de [latex]{Xbackslash {u}}[/latex]. Soit [latex]{mathcal{B}}[/latex] la boule unité fermée d'un espace euclidien [latex]{E}[/latex].On munit [latex]{mathcal{L}(E)}[/latex] de la norme: [latex]{N(u)=suplimits_{xin mathcal{B}}||u(x)||}[/latex]. Montrer que le groupe orthogonal [latex]{O(E)}[/latex] est l'ensemble des points extrémaux de [latex]{mathcal{B}}[/latex]. On admettra que…
- Une inéquation différentielle Soit [latex]{fin C^{1}(mathbb{R}, mathbb{R})}[/latex] telle que [latex]{f(1)=1}[/latex] et : [latex]{forall xgeq 1}[/latex], [latex]{f^{prime }(x)=dfrac{1}{x^{2}+f^{2}(x)}}[/latex]. Montrer que [latex]{f}[/latex] a une limite finie [latex]{L}[/latex] en [latex]{+infty }[/latex] et que [latex]{Lleq 1+dfrac{pi}{4}}[/latex]→ Lire la suite
- Une base de Kn[X] Soient [latex]{Pin mathbb{K}[X]}[/latex], de degré [latex]{n}[/latex], et soient [latex]{a_{0},...,a_{n}}[/latex] distincts dans [latex]{mathbb{K}}[/latex]. Montrer que les polynômes [latex]{P_j(X)=P(X+a_{j})}[/latex] forment une base de [latex]{mathbb{K}_{n}[X]}[/latex].→ Lire la suite
- Déterminant de la matrice des ppcm(i,j) La matrice M des ppcm(i,j). Décomposition puis déterminant de M.→ Lire la suite
- Déterminant de la matrice des pgcd(i,j) La matrice [latex]G_n[/latex] des pgcd(i,j). Théorème de Smith. Décomposition de [latex]G_n[/latex].→ Lire la suite
- Puissances et racines de matrices Pour [latex]{Ainmathcal{M}_n(mathbb{K})}[/latex], calcul de [latex]{A^n,,ninmathbb{Z}}[/latex] de [latex]{A^{1/n}}[/latex], de [latex]{exp(A)}[/latex] → Lire la suite
- Un produit scalaire entre polynômes Étude de [latex]{left(fmid gright)=dfrac{2}{n}displaystylesumlimits_{k=0}^{n-1}f(c_{k})g(c_{k})[/latex], où [latex][latex]{c_k=cosBigl(dfrac{(2k+1)pi}{2n}Bigr)}[/latex][→ Lire la suite
- Polynômes et suite de Fibonacci Étude des [latex]{P_n(x)=displaystyleprod_{k=1}^{n}(1-x^{F_k})}[/latex], où les [latex]{F_k}[/latex] forment la suite de Fibonacci→ Lire la suite
- Étude de la suite n ⟼ (1+1/n)n+a (Exercice d'oral Centrale Mp) Pour tout réel [latex]{a}[/latex], on sait que la suite [latex]{n mapsto (1+1/n)^(n+a)}[/latex] tend vers e. Dans cet exercice, on étudie la monotonie de cette suite, et sa position par rapport à la limite e, en fonction du paramètre [latex]{a}[/latex].→ Lire la suite
- Une factorisation Soit [latex]{nin mathbb{N}^{ast }}[/latex]. On considère le polynôme : [latex display="true"]{begin{array}{rl}P_n&=1+2X+3X^{2}+cdots+(n-1)X^{n-2}+nX^{n-1}\\&+(n-1)X^{n}+...+2X^{2n-3}+X^{2n-2}end{array}}[/latex]Trouver les racines de [latex]{P_n}[/latex] et le factoriser dans [latex]{mathbb{C}[X]}[/latex].→ Lire la suite